Other topics in this section

How HIV causes disease: latest news

How HIV causes disease resources

  • CD4 cell counts

    T-cells (or T-lymphocytes) are white blood cells that play important roles in the immune system. There are two main types of T-cells. One type has...

    From: Factsheets

    Information level Level 2
  • HIV and the immune system

    The immune system is the body’s natural defence system. It’s a network of cells, tissues and organs inside the body.The immune system recognises and fights...

    From: The basics

    Information level Level 1
  • CD4 and viral load

    It’s important for all people with HIV to take regular blood tests. The two most important blood tests are for CD4 and viral load.A CD4...

    From: The basics

    Information level Level 1
  • The immune system and HIV

    A description of how the immune system works, its response to HIV, and factors affecting disease progression....

    From: HIV treatments directory

    Information level Level 4
  • Immune system cells

    The human immune system protects the body against foreign objects, such as micro-organisms. It is made of many different cells that are spread throughout the...

    From: Factsheets

    Information level Level 2

How HIV causes disease features

How HIV causes disease news from aidsmap

More news

How HIV causes disease news selected from other sources

  • The genetics of coping with HIV

    We respond to infections in two fundamental ways. One is 'resistance,' where the body attacks the invading pathogen and reduces its numbers. Another, which is much less well understood, is 'tolerance,' where the body tries to minimize the damage done by the pathogen. A study using data from a large Swiss cohort of HIV-infected individuals gives us a glimpse into why some people cope with HIV better than others.

    17 September 2014 | Science Daily
  • Protein tethers HIV and Ebola to cells

    A family of proteins that helps viruses, such as HIV and Ebola, enter a cell also can block the release of those viruses. When HIV-1 or any virus infects a cell, it replicates and spreads to other cells. One type of cellular protein—T cell immunoglobulin and mucin domain, or TIM-1—has previously been shown to promote entry of some highly pathogenic viruses into host cells. Researchers have now discovered that the same protein possesses a unique ability to block the release of such viruses. The findings are published in the Proceedings of the National Academy of Sciences. “This is a surprising finding that provides new insights into our understanding of not only HIV infection, but also that of Ebola and other viruses,” says Shan-Lu Liu, associate professor of molecular microbiology and immunology at University of Missouri.

    26 August 2014 | Futurity
  • How HIV co-opts gut bacteria to pose as a familiar infection

    One of the most effective methods used by HIV to evade control is to hide from the immune system. B-cells are crucial for controlling new infections, producing specific antibodies to attack it, which coat the surface of infected cells and tag them for destruction. But according to a study from Duke Medicine, published in Cell Host & Microbe, when HIV enters and begins replicating in the gut, the reaction of B cells is ineffective because the virus is able to pose as a “good” bacterium. Its gp41 surface protein - which is displayed on the surface of infected cells - looks like surface proteins on the cells of friendly gut bacteria.

    21 August 2014 | The Conversation UK
  • Gut flora influences HIV immune response

    Normal microorganisms in the intestines appear to play a pivotal role in how the HIV virus foils a successful attack from the body’s immune system, according to new research. "Gut flora keeps us all healthy by helping the immune system develop, and by stimulating a group of immune cells that keep bacteria in check," said the study's senior author. "But this research shows that antibodies that react to bacteria also cross-react to the HIV envelope."

    14 August 2014 | Science Daily
  • Why the immune system fails to kill HIV

    Our immune system contains CD8+ T cells which protect us from various diseases such as cancer and viruses. Some of them are specifically tasked with killing cells infected with the HIV virus – and researchers from Karolinska Institutet, together with international colleagues, have for the first time identified a key explanation for why these cells are unsuccessful in their task. In simple terms, the immune system's ignition keys have not been turned all the way to the start position, which would enable the CD8+ T cells to kill the cells infected with HIV.

    19 July 2014 | Karolinska Institutet press release
  • Paper explores new theory on spread of HIV by "popular" cells

    "Popular" cells - could there really be such a thing? According to a new opinion paper published in PLoS Pathogens, the human body may contain cells that have more contact with other cells and could be "superspreaders" of the HIV virus.

    11 June 2014 | HIV / AIDS News From Medical News Today
  • Researchers trace HIV adaptation to its human host

    In a new study that traces the evolution of HIV in North America, researchers have found evidence that the virus is slowly adapting over time to its human hosts. However, this change is so gradual that it is unlikely to have an impact on vaccine design.

    11 June 2014 | Science Daily
  • Treating Leaking Gut May Slow Progression of HIV Disease

    A kidney disease treatment successfully compensated for the effects of a leaking gut among monkeys infected with the simian version of HIV.

    11 June 2014 | AIDSMeds
  • Low cholesterol in immune cells tied to slow progression of HIV

    People infected with HIV whose immune cells have low cholesterol levels experience much slower disease progression, even without medication, according to University of Pittsburgh Graduate School of Public Health research that could lead to new strategies to control infection.The Pitt Public Health researchers found that low cholesterol in certain cells, which is likely an inherited trait, affects the ability of the body to transmit the virus to other cells.

    29 April 2014 | Eurekalert Inf Dis
  • How a House Finch Disease Reshaped What We Know About Epidemics

    One team of researchers was able to study a highly virulent disease in House Finches. Their recent paper in PLOS Biology sheds light on what makes some disease-causing microbes, or pathogens, more harmful than others.

    30 January 2014 | Cornell Lab of Ornithology
More news

Our information levels explained

  • Short and simple introductions to key HIV topics, sometimes illustrated with pictures.
  • Expands on the previous level, but also written in easy-to-understand plain language.
  • More detailed information, likely to include medical and scientific language.
  • Detailed, comprehensive information, using medical and specialised language.